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Abstract — The aim of this paper is to give the basic notions 

of the theory of Fourier Series in connection with Inner 

production spaces. The preliminary concepts and fundamentals 

of normed spaces, inner product spaces and the Fourier series 

are being discussed. The space of all periodic complex integrable 

functions forms an inner product space. Basic trigonometric 

functions 𝑺𝒊𝒏 𝒙 and 𝑪𝒐𝒔 𝒙 will form a basis for this linear space. 

A special emphasis is given in deriving the formulae for the 

Fourier coefficients. The convergence properties of Fourier 

series are also studied. 
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I. INTRODUCTION  

In this section, some of the fundamentals of linear spaces, 

normed spaces, inner product spaces, orthogonality in inner 

product spaces and Fourier series are given. All these are very 

essential for the next section on the class of periodic complex 

integrable functions and the Fourier development. 

1.1 Linear spaces: 

In this subsection, the basics and preliminaries of linear 

spaces, which are also called vector spaces are discussed. The 

main issue related with an infinite dimensional linear space is 

also presented here. 

A linear space [1] over a field 𝐾 is a non empty set 𝑉 

along with a function +: 𝑉 × 𝑉 ⟶ 𝑉, called addition, and a 

function ∙ ∶ 𝐾 × 𝑉 ⟶ 𝑉 , called scalar multiplication, such 

that  

1. (𝑉, +) is an abelian group  

2. 𝑘 ∙ (𝑥 + 𝑦) = 𝑘 ∙ 𝑥 + 𝑘 ∙ 𝑦 , for all 𝑘 ∈ 𝐾  and for all 

𝑥, 𝑦 ∈ 𝑉 

3. (𝑘 + 𝑙) ⋅ 𝑥 = 𝑘 ∙ 𝑥 + 𝑙 ∙ 𝑥 , for all 𝑘, 𝑙 ∈ 𝐾  and for all 

𝑥 ∈ 𝑉 

4. (𝑘𝑙) ∙ 𝑥 = 𝑘 ∙ (𝑙 ∙ 𝑥), for all 𝑘, 𝑙 ∈ 𝐾 and for all 𝑥 ∈ 𝑉 

5. 1 ∙ 𝑥 = 𝑥 

It is a best practice to write 𝑘𝑥 in place of 𝑘 ∙ 𝑥. If 𝐾 =
ℝ, then 𝑉 is called a real linear space and if 𝑘 = ℂ, 𝑉 is called 

a complex linear space. Elements of the linear space 𝑉 are 

called vecors, and elements of the field 𝐾 are called scalars.  

A nonempty set 𝐸 of the linear space 𝑉 is said to be a 

subspace [1] of 𝑉, if 𝑘𝑥 + 𝑙𝑦 ∈ 𝐸 for all 𝑥, 𝑦 ∈ 𝐸 and for all 

𝑘, 𝑙 ∈ 𝐾. For any nonzero finite subset 𝐸 of 𝑉, span of 𝐸 is 

denoted and defined by 𝑠𝑝𝑎𝑛 𝐸 = {𝑘1𝑥1 + 𝑘2𝑥2 + ⋯ +
𝑘𝑛𝑥𝑛: 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐸; 𝑘1, 𝑘2, … , 𝑘𝑛 ∈ 𝐾}. One can easily 

prove that 𝑠𝑝𝑎𝑛 𝐸 is the smallest subspace of 𝑉 containing 

𝐸. If 𝑠𝑝𝑎𝑛 𝐸 = 𝑉, we say that 𝐸 spans 𝑉.  

A nonzero finite subset 𝐸  of 𝑉  is said to be linearly 

independent [2] if for all 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐸  and for all 

𝑘1, 𝑘2, … , 𝑘𝑛 ∈ 𝐾, the equation 𝑘1𝑥1 + 𝑘2𝑥2 + ⋯ + 𝑘𝑛𝑥𝑛 =
0 implies that 𝑘1 = 𝑘2 = ⋯ = 𝑘𝑛 = 0 . If 𝐸  is not linearly 

independent, it is called linearly dependent. A linearly 

independent set cannot contain the zero vector. 

A nonzero finite subset 𝐸 of 𝑉 is called a Hamel basis 

or simply basis of 𝑉 , if 𝑠𝑝𝑎𝑛 𝐸 = 𝑉  and 𝐸  is linearly 

independent. There are two points which must be 

remembered in the context of basis of a linear space. One is 

on existence of a basis and the other is on the uniqueness of 

basis.  

For the former one, the problem has an affirmative 

solution. That is every linear space possess a basis. The proof 

of this statement uses one of the most celebrated results of set 

theory, namely, the Zorn’s lemma. The lemma states that, any 

nonempty partially ordered set in which every totally ordered 

set has an upper bound possess a maximal element.  

The existence of such a maximal linearly independent 

subset of 𝑉 can be guaranteed by Zorn’s lemma. The simple 

procedure which could be applied is: start with a linearly 

independent subset of 𝑉, and progressively enlarge it until it 

spans 𝑉 . One thing we notice is that, every nonempty 

maximal linearly independent subset will be a basis of 𝑉.  

For the latter one, the solution is not affirmative. That is 

a basis can have more than one basis. Still there exists some 
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unique feature, even there are more than one. Suppose a linear 

space 𝑉  has a basis consisting of 𝑛  elements, 1 ≤ 𝑛 < ∞ . 

Then any other basis for 𝑉 also possess the same number of 

elements.  

The cardinality [3] of the basis of a linear space is called 

the dimension of the linear space. If the linear space 𝑉 has a 

basis with finite number of elements, then 𝑉 is called finite 

dimensional. Trivially the space {0}  has zero dimension. 

There are linear spaces which are infinite dimensional. A 

linear space 𝑉 is called infinite dimensional if it contains a 

linearly independent subset. The spanning criterion is very 

much associated with the notion of convergence of an infinite 

series.  After introducing the notion of norm, ‖∙‖ on the linear 

space 𝑉,  the issue of convergence will be rectified. 

The next subsection on normed spaces helps us to 

understand the analytic nature of a linear space by 

introducing a metric through norm. 

1.2 Normed spaces: 

In a linear space, addition of two vectors and scaling of a 

given vector by a scalar are the two operations which are 

permitted to do. One could not able to measure the length of 

a given vector. By introducing a norm on a linear space, the 

length of each vector can easily be measured. In this 

subsection, the fundamentals of a normed space are 

presented.  This notion will help to deal with the convergence 

of infinite series in an infinite dimensional linear space.  

Let 𝑉  be a linear space over a field 𝐾. A norm [3, 4], 

denoted by ‖∙‖ is a function from 𝑉  to ℝ such that for all 

𝑥, 𝑦 ∈ 𝑉 and 𝑘 ∈ 𝐾, the following conditions are satisfied. 

1. ‖𝑥‖ ≥ 0 

2. ‖𝑥‖ = 0 if and only if 𝑥 = 0 

3. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ 

4. ‖kx‖ = |𝑘|‖𝑥‖. 

A linear space 𝑉 with a norm equipped in it is called a 

normed space. 

Introduction of a norm on a linear space is not enough 

to fulfil all the advantages which could be enjoyed in a metric 

space. From a norm, we extend the idea to measure the 

distance [4] between two given vectors. The distance between 

two vectors 𝑥 and 𝑦 is denoted by 𝑑(𝑥, 𝑦) and is defined as 

the length of a new vector 𝑥 − 𝑦.  

That is 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. One can easily verify that, this 𝑑 

satisfy all the axioms of a metric. 

Thus, all normed spaces are metric spaces with respect to the 

induced metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖, the right side can simply 

be evaluated in a normed space. 

One question which could be forwarded in this direction 

is finding out the number of norms that an individual can 

define in a linear space. The answer to this question is many 

norms can be defined on any linear space. But the norms 

could be compared in connection with the associated metrics. 

The equivalency [5] of two norms ‖∙‖ and ‖∙‖′ on the linear 

space 𝑉 is defined as follows. The norm ‖∙‖ is equivalent to 

the norm ‖∙‖′  if and only if there are 𝛼, 𝛽 > 0  such that 

𝛽‖𝑥‖ ≤ ‖𝑥‖′ ≤ 𝛼‖𝑥‖  for all 𝑥 ∈ 𝑉 . One of the most 

beautiful results regarding equivalency of norms is that, in 

any finite dimensional linear space, all the norms are 

equivalent.  

A complete normed space is a Banach space. Being 

complete in the sense that, all Cauchy sequences are 

convergent sequences. The concepts of Cauchy and 

convergent sequences, can be completely handled in a 

normed space through the induced metric. Studies in this 

direction are relevant, as there are normed spaces which are 

not Banach spaces. All finite dimensional normed spaces 

Banach [6], the discretion could be more suitable in infinite 

dimensional spaces.  

The next subsection on inner product space helps us to 

understand the geometry of a linear space. 

1.3 Inner product spaces: 

In this subsection, the basic notions of inner product spaces 

are presented. These are very useful in dealing with geometric 

concepts like perpendicularity in the setting of a linear space. 

Moreover, this will be applied to Fourier analysis in the next 

chapter. 

Let 𝑉  be a complex linear space. A complex inner 

product on 𝑉  is an operation 〈∙, ∙〉: 𝑉 × 𝑉 → 𝐾 , which 

satisfies the following for all 𝑥, 𝑦, 𝑧 ∈ 𝑉 and 𝑎, 𝑏 ∈ ℂ: 

1. conjugate symmetry: 〈𝑥, 𝑦〉 = 〈𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅ 

2. linearity in the first term: 〈𝑎𝑥 + 𝑏𝑦, 𝑧〉 = 𝑎〈𝑥, 𝑧〉 +
𝑏〈𝑦, 𝑧〉 

3. non negativity: 〈𝑥, 𝑥〉 ≥ 0 

4. non degeneracy: 〈𝑥, 𝑥〉 = 0 if and only if 𝑥 = 0. 

Real inner products can be defined in the same manner. 

In this entire article, “inner product” means “complex inner 

product”. If the linear space 𝑉  is equipped with an inner 

product, it is called an inner product space.  

An example of an inner product is given below. 

Let 𝑉 = ℂ𝑛 = {𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛): 𝑥𝑖 ∈ ℂ, 1 ≤ 𝑖 ≤ 𝑛}.  

For 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑛)  ∈ 𝑉,  

define 〈𝑥, 𝑦〉 = ∑ 𝑥𝑗𝑦�̅�
𝑛

𝑗=1
. If 𝑉 = ℝ𝑛,  

just take the coordinate wise product and then the summation, 

the conjugation has no meaning.  

The following three fundamental results, namely, 

polarization identity, Schwarz inequality and the 

Parallelogram law play an important role in the theory of 

inner product spaces.  
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The polarization identity states that, for all 𝑥, 𝑦 ∈ 𝑉, we have 

〈𝑥, 𝑦〉 =
1

4
[〈𝑥 + 𝑦, 𝑥 + 𝑦〉 − 〈𝑥 − 𝑦, 𝑥 − 𝑦〉 + 𝑖〈𝑥 + 𝑖𝑦, 𝑥 +

𝑖𝑦〉 − 𝑖〈𝑥 − 𝑖𝑦, 𝑥 − 𝑖𝑦〉].  

This identity shows that an inner product on a linear 

space 𝑉 , is completely determined by the diagonal entries 
〈𝑧, 𝑧〉, 𝑧 ∈ 𝑉 . Moreover, an element 𝑥  is completely 

determined by the scalars 〈𝑥, 𝑦〉, 𝑦 ∈ 𝑉. 

The Schwarz inequality states that, for all 𝑥, 𝑦 ∈ 𝑉 , 

|〈𝑥, 𝑦〉|2 ≤ 〈𝑥, 𝑥〉〈𝑦, 𝑦〉 . It can easily be proved that; the 

inequality becomes an equality when {𝑥, 𝑦}  is linearly 

dependent.  

Finally, the third result, namely the parallelogram law 

gives an interplay between the structural properties of the 

norm and the inner product of the linear space. The 

parallelogram law states that, for all 𝑥, 𝑦 ∈ 𝑋 , we have 

‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2(‖𝑥‖2 + ‖𝑦‖2). 

An inner product 〈∙, ∙〉 on a linear space 𝑉 induces a norm 

‖∙‖ on 𝑉 in the canonical way.  

That is for 𝑥 ∈ 𝑉, ‖𝑥‖ = 〈𝑥, 𝑥〉
1

2.  

Thus, all inner product spaces can be considered as 

normed spaces. Conversely, one can think about the 

implication from a normed space to an inner product space. 

If ‖∙‖  is a norm on a linear space 𝑉 , which satisfies the 

parallelogram law, then in accordance with polarization 

identity, we can easily define, 〈𝑥, 𝑦〉 =
1

4
[‖𝑥 + 𝑦‖2 − ‖𝑥 −

𝑦‖2 + 𝑖‖𝑥 + 𝑖𝑦‖2 − 𝑖‖𝑥 − 𝑖𝑦‖2].  

This result is due to Jordan and von Neumann, which 

actually characterizes all inner product spaces among all 

normed spaces.  

An inner product space which is complete in the norm 

induced by the inner product is called a Hilbert space. All 

inner product spaces being normed spaces, it could easily be 

deduced that, all Hilbert spaces are Banach spaces. But for 

the converse, the result of Jordan and Neumann shows that, 

all Banach spaces that satisfy the parallelogram law are 

Hilbert spaces.  

1.4 Orthogonality in inner product spaces: 

Two vectors 𝑥 and 𝑦 in an inner product space 𝑉 are called 

orthogonal if 〈𝑥, 𝑦〉 = 0. We write this as 𝑥 ⊥ 𝑦. Two subsets 

𝐸 and 𝐹 of the inner product space 𝑉 are called orthogonal if 

𝑥 ⊥ 𝑦 for all 𝑥 ∈ 𝐸 and for all 𝑦 ∈ 𝐹. A subset 𝐸 is said to be 

orthogonal if 𝑥 ⊥ 𝑦 for all 𝑥 ≠ 𝑦 in 𝐸. An orthogonal set 𝐸 is 

called orthonormal if ‖𝑥‖ = 1  for all 𝑥 ∈ 𝐸 . Some trivial 

implications are mentioned below.  

The zero vector can be a member of an orthogonal set. 

So, an orthogonal set can be a linearly dependent one. If an 

orthogonal set is free from the zero vector, it is linearly 

independent. In an orthonormal set, each member is of unit 

length, the zero vector cannot be included in an orthonormal 

set. An orthonormal set is always linearly independent. 

Conversely, a linearly independent set can be made 

orthogonal and in turn orthonormal by Gram- Schmidt 

Orthonormalization process.  

The Pythagoras theorem holds good in an orthogonal 

set. If {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}  is an orthogonal set, then ‖𝑥1 +
𝑥2 + ⋯ + 𝑥𝑛‖2 = ‖𝑥1‖2 + ‖𝑥2‖2 + ⋯ + ‖𝑥𝑛‖2 . It is very 

interesting to note that, the distance between any two vectors 

in an orthonormal set is always √2. For a brief justification, 

pick any two members 𝑥 and 𝑦 from an arbitrary orthonormal 

set 𝐸.  Now ‖𝑥 − 𝑦‖2 = 〈𝑥 − 𝑦, 𝑥 − 𝑦〉 = 〈𝑥, 𝑥〉 +
〈𝑥, − 𝑦〉 − 〈𝑦, 𝑥〉 + 〈𝑦, 𝑦〉 = 〈𝑥, 𝑥〉 + 〈𝑦, 𝑦〉 = ‖𝑥‖2 +
‖𝑦‖2 = 1 + 1 = 2. 

The notion of projections is an important geometrical 

feature of an orthonormal set. One can project a vector in a 

higher dimensional linear space onto a lower dimensional 

subspace. For example, an individual can project a vector in 

ℝ3  onto ℝ2 . It is very clear from common logic that; the 

converse will not hold good. Formally, if 𝑊 is a subspace of 

the linear space 𝑉, a projection of 𝑥 onto 𝑊 is a vector 𝑦 ∈
𝑊, where 𝑥 − 𝑦 is orthogonal to every vector in 𝑊. 

The following two propositions are of great importance 

in the development of Fourier series. The first one is 

regarding the projection of a vector onto the span of an 

orthonormal set and the second one says that projection to the 

span of an orthonormal set is always a better approximate 

than any other vector in the span of the orthonormal set.  

Proposition 1:  Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}  be an orthonormal 

subset of an inner product space 𝑉. Let 𝑥 ∈ 𝑉 be arbitrary. 

Define 𝑐𝑛 = ⟨𝑥, 𝑒𝑛⟩  and 𝑠 = ∑ 𝑐𝑛𝑒𝑛
𝑛
𝑗=1 . Then 𝑠  is a 

projection of 𝑥 onto the span of 𝐸.  

The proof is very simple by applying the definition of 

projection. We complete the proof by proving ⟨𝑥 − 𝑠, 𝑦⟩ = 0, 

where 𝑦 is an arbitrary vector in the span of 𝐸. 

Proposition 2: Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}  be an orthonormal 

subset of an inner product space 𝑉. Let 𝑥 ∈ 𝑉 be arbitrary. 

Define 𝑐𝑛 = ⟨𝑥, 𝑒𝑛⟩  and 𝑠 = ∑ 𝑐𝑛𝑒𝑛
𝑛
𝑗=1 . Then for any 𝑦  in 

the span of 𝐸, we have ‖𝑥 − 𝑠‖ ≤ ‖𝑥 − 𝑦‖. 

The next subsection gives us a brief outline of Fourier series. 

1.5 Fourier Series:  

In this subsection, only an overview of Fourier series is 

presented, just to know how the expression looks like. In the 

next chapter, the class of complex periodic integrable 

functions could be dealt with. 

A Fourier series [7] is an expression of a periodic 

function in terms of an infinite sum of 𝑠𝑖𝑛𝑒𝑠 and 𝑐𝑜𝑠𝑖𝑛𝑒𝑠. It 

strongly depends upon the orthogonal relationship of 𝑠𝑖𝑛𝑒 

and 𝑐𝑜𝑠𝑖𝑛𝑒 functions. The computation and study of Fourier 

series is known as harmonic analysis.  

Suppose that 𝑓(𝑥)  is a periodic function with period 

2𝜋. Then the real form of the Fourier series of 𝑓(𝑥) is given 
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by 𝑓(𝑥) =
𝑎0

2
+ ∑ (𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘  𝑠𝑖𝑛𝑘𝑥)∞

𝑘=1 ; 𝑘 =

0, 1, 2, …,   where 𝑎𝑘 =
1

𝜋
∫ 𝑓(𝑥)

𝛼+2𝜋

𝛼
 𝐶𝑜𝑠 𝑘𝑥 𝑑𝑥 and 

 𝑏𝑘 =
1

𝜋
∫ 𝑓(𝑥)

𝛼+2𝜋

𝛼
 𝑆𝑖𝑛 𝑘𝑥 𝑑𝑥.  

The complex form of the Fourier series of 𝑓(𝑥) is given by 

𝑓(𝑥) = ∑ 𝐶𝑘𝑒𝑖𝑘𝑥∞

−∞
, where 𝑐𝑘 =

1

2𝜋
∫ 𝑓(𝑥)

𝛼+2𝜋

𝛼
𝑒−𝑖𝑘𝑥  𝑑𝑥. 

In the next chapter, it could easily be seen that, how the 

above formulae could be derived by using the help of an inner 

product.  

 

II. INNER PRODUCT IN FOURIER SERIES 

In this chapter, the properties of the space of all complex 

periodic integrable functions are discussed in detail. This 

space is equipped with an inner product, and later, it could be 

found out that, the Fourier coefficients are actually the inner 

products of the function and 𝑠𝑖𝑛𝑒𝑠 or 𝑐𝑜𝑠𝑖𝑛𝑒𝑠 . Some 

relations between the norms of functions and their Fourier 

coefficients, provided by Bessel’s inequality and Parseval’s 

identity are also being investigated. 

2.1 The inner product space of complex periodic integrable 

functions: 

Here, it is proved that, the set of all complex, periodic, 

Riemann integrable functions forms a linear space and then 

an inner product space. 

Theorem 2.1.1: Let 𝑉∗ be the set of all 2𝜋 −periodic complex 

valued Riemann integrable functions. Clearly 𝑉∗ is a linear 

space under usual addition of functions and scaling of 

functions by complex numbers. The inner product on 𝑉∗ is 

defined as follows.  

For 𝑓, 𝑔 ∈ 𝑉, define 〈𝑓, 𝑔〉 =
1

2𝜋
∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥.  

Let us verify that this definition satisfies all the axioms of an 

inner product. 

To prove the conjugate symmetry,  

set 𝑓(𝑥) = 𝑎(𝑥) + 𝑖𝑏(𝑥) and 𝑔(𝑥) = 𝑐(𝑥) + 𝑖𝑑(𝑥). 

Now,〈𝑓, 𝑔〉 =
1

2𝜋
∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥 =

1

2𝜋
∫ [𝑎(𝑥) +

2𝜋

0

𝑖𝑏(𝑥)][𝑐(𝑥) − 𝑖𝑑(𝑥)]  𝑑𝑥,  

after some manipulations we see that 〈𝑓, 𝑔〉 =
1

2𝜋
∫ [𝑐(𝑥) +

2𝜋

0

𝑖𝑑(𝑥)][𝑎(𝑥) − 𝑖𝑏(𝑥)]  𝑑𝑥 =
1

2𝜋
∫ 𝑔(𝑥)𝑓(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥 = 〈𝑔, 𝑓〉̅̅ ̅̅ ̅̅ ̅. 

It is easy to prove the linearity in the first variable, for,  

〈𝛼𝑓 + 𝛽𝑔, ℎ〉 =
1

2𝜋
∫ [𝛼𝑓(𝑥) + 𝛽𝑔(𝑥)]ℎ(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥 =

𝛼

2𝜋
∫ 𝑓(𝑥)ℎ(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥 +

𝛽

2𝜋
∫ 𝑔(𝑥)ℎ(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥 = 𝛼〈𝑓, ℎ〉 +

𝛽〈𝑔, ℎ〉. 

It can also be seen that the positive definiteness holds good in 

this definition.  

For,  〈𝑓, 𝑓〉 =
1

2𝜋
∫ 𝑓(𝑥)𝑓(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥 =

1

2𝜋
∫ |𝑓(𝑥)|22𝜋

0
 𝑑𝑥 ≥ 0. 

Finally, we verify the non-degeneracy, if 𝑓 = 0 , then 

〈𝑓, 𝑓〉 =
1

2𝜋
∫ 0

2𝜋

0
 𝑑𝑥 = 0.  

Conversely, 〈𝑓, 𝑓〉 =
1

2𝜋
∫ 𝑓(𝑥)𝑓(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥 = 0  implies that 

1

2𝜋
∫ |𝑓(𝑥)|22𝜋

0
 𝑑𝑥 = 0, which implies that 𝑓 = 0. Thus 𝑓 =

0 if and only if 〈𝑓, 𝑓〉 = 0. 

It is remarked that, the norm induced by this inner product is 

given by 

 ‖𝑓‖2 = 〈𝑓, 𝑓〉 =
1

2𝜋
∫ 𝑓(𝑥)𝑓(𝑥)̅̅ ̅̅ ̅̅2𝜋

0
 𝑑𝑥 =

1

2𝜋
∫ |𝑓(𝑥)|22𝜋

0
 𝑑𝑥 . 

With respect to this norm, we will deal with the convergence 

of the Fourier series. 

In the next subsection, an orthonormal family will be 

identified in the inner product space which is already 

constructed. 

2.2 Orthonormal set becomes a basis of the inner product 

space: 

Here the basic requirements for the complex form of the 

Fourier series are identified. 

Theorem 2.2.1: The family {(𝑒𝑛)𝑛∈ℤ}, defined by 𝑒𝑛(𝑥) =
𝑒𝑖𝑛𝑥 = 𝐶𝑜𝑠 𝑛𝑥 + 𝑖 𝑆𝑖𝑛 𝑛𝑥  is an orthonormal subset of the 

inner product space, 𝑉∗ . The verification of this result as 

follows. 

For 𝑚, 𝑛 ∈ ℤ, 〈𝑒𝑛, 𝑒𝑚〉 =
1

2𝜋
∫ 𝑒𝑖𝑚𝑥𝑒𝑖𝑛𝑥  ̅̅ ̅̅ ̅̅  𝑑𝑥 =

2𝜋

0
1

2𝜋
∫ 𝑒𝑖(𝑚−𝑛)𝑥  𝑑𝑥 =

2𝜋

0
{
1; 𝑚 = 𝑛
0; 𝑚 ≠ 𝑛

. 

The key idea of the Fourier series is that, the family 

{(𝑒𝑛)𝑛∈ℤ}  is a basis for 𝑉∗ . This means, every complex, 

periodic, Riemann integrable function can be uniquely 

represented as a linear combination of 𝑠𝑖𝑛𝑒𝑠 and 𝑐𝑜𝑠𝑖𝑛𝑒𝑠. 

In the next result, it could be cleared that the sum of 

inner products of an arbitrary function 𝑓 from 𝑉∗ with any 

orthonormal set {(𝑎𝑛)𝑛∈ℤ}  is the projection of 𝑓  onto the 

span of {(𝑎𝑛)𝑛∈ℤ}. By the best approximating property of 

projections, it is guarantee that, the convergence of the 

Fourier series is faster than any other. 

Theorem 2.2.2: Let 𝑓 ∈ 𝑉∗ . Define 𝑐𝑛 = ⟨𝑓, 𝑎𝑛⟩ , Let 

𝑡𝑁(𝑓) = ∑ 𝑐𝑛𝑎𝑛|𝑛|≤𝑁 . Then 𝑡𝑁(𝑓) is the projection of 𝑓 onto 

the span of {(𝑎𝑛)𝑛∈ℤ}. 

The proof of this theorem is by using the definition of 

projections. 

Let 𝑎𝑚 ∈ {𝑎𝑛}|𝑛|≤𝑁  be arbitrary. It is easy to prove that 

〈𝑓 − 𝑡𝑁(𝑓), 𝑎𝑚〉 = 〈𝑓 − ∑ 𝑐𝑛𝑎𝑛|𝑛|≤𝑁 , 𝑎𝑚〉 = 〈𝑓, 𝑎𝑚〉 −
∑ 𝑐𝑛|𝑛|≤𝑁 〈𝑎𝑛 , 𝑎𝑚〉 = 〈𝑓, 𝑎𝑚〉 − 𝑎𝑚 = 𝑎𝑚 − 𝑎𝑚 = 0.  

The next result (the Bessel’s inequality) plays an 

important role in the convergence of Fourier series [8]. It 
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relates the magnitude of the Fourier coefficients and the norm 

of the function which one approximate. 

Theorem 2.2.3: Let 𝑓 ∈ 𝑉∗  be an arbitrary function and 

suppose that {𝑎𝑛: 𝑛 ∈ ℤ} be an arbitrary orthonormal subset 

of 𝑉∗. Let 𝑐𝑛 = 〈𝑓, 𝑎𝑛〉. Then ∑ |𝑐𝑛|2 ≤ ‖𝑓‖2∞

𝑛=−∞
. 

Proof: As in the proof of theorem 2.2.2, let 𝑡𝑁(𝑓) =
∑ 𝑐𝑛𝑎𝑛|𝑛|≤𝑁 . Since, 𝑡𝑁(𝑓)  is a member of the span of 

{𝑎𝑛}|𝑛|≤𝑁  , we have, 𝑡𝑁(𝑓) is orthogonal to 𝑓 − 𝑡𝑁(𝑓). So, 

we get ‖𝑓‖2 = ‖𝑓 − 𝑡𝑁(𝑓) + 𝑡𝑁(𝑓)‖2 = ‖𝑓 − 𝑡𝑁(𝑓)‖2 +
‖𝑡𝑁(𝑓)‖2.  

But by easy manipulations, we can get 

 ‖𝑡𝑁(𝑓)‖2 = ∑ |𝑐𝑛|2
|𝑛|≤𝑁

.  

So, the above equation becomes, 

 ‖𝑓‖2 = ‖𝑓 − 𝑡𝑁(𝑓)‖2 + ∑ |𝑐𝑛|2
|𝑛|≤𝑁

.  

From this we get, ∑ |𝑐𝑛|2 ≤ ‖𝑓‖2∞

𝑛=−∞
. 

 

III. CONVERGENCE OF THE FOURIER SERIES 

In this chapter, it is proved that the Fourier series is the best 

approximation to any function in 𝑉∗  than any other 

combination of vectors in any orthonormal set in 𝑉∗. In the 

following subsection, this fact is revealed. 

3.1 Best approximation: 

In the following theorem, an inequality showing that the 

partial sum [8] of the Fourier series of 𝑓  gives a better 

approximation to 𝑓 than any linear combination of vectors 

which include non-Fourier coefficients, is presented. 

Theorem 3.1.2: Let 𝑓 ∈ 𝑉∗  be an arbitrary function with 

Fourier coefficients 𝑎𝑛 . If 𝑎𝑛 = 〈𝑓, 𝑒𝑛〉, where {(𝑒𝑛)𝑛∈ℤ} , 

defined by 𝑒𝑛(𝑥) = 𝑒𝑖𝑛𝑥 = 𝐶𝑜𝑠 𝑛𝑥 + 𝑖 𝑆𝑖𝑛 𝑛𝑥 . Then ‖𝑓 −

𝑠𝑁(𝑓)‖ ≤ ‖𝑓 − ∑ 𝑐𝑛𝑒𝑛|𝑛|≤𝑁 ‖ for any 𝑐𝑛 ∈ ℂ. 

Proof: By simple addition and subtraction, get 
∑ 𝑐𝑛𝑒𝑛 =|𝑛|≤𝑁 ∑ (𝑎𝑛𝑒𝑛 + 𝑐𝑛𝑒𝑛 − 𝑎𝑛𝑒𝑛)|𝑛|≤𝑁  

= ∑ 𝑎𝑛𝑒𝑛 −|𝑛|≤𝑁 ∑ (𝑎𝑛𝑒𝑛 − 𝑐𝑛𝑒𝑛) = 𝑠𝑁(𝑓) −|𝑛|≤𝑁

 ∑ (𝑎𝑛 − 𝑐𝑛)𝑒𝑛|𝑛|≤𝑁
  

This implies that 

 ‖𝑓 − ∑ 𝑐𝑛𝑒𝑛|𝑛|≤𝑁 ‖
2

= ‖𝑓 − 𝑠𝑁(𝑓) + ∑ (𝑎𝑛 −
|𝑛|≤𝑁

𝑐𝑛)𝑒𝑛‖
2

 

By orthogonality of 𝑓 − 𝑠𝑁(𝑓) to ∑ (𝑎𝑛 − 𝑐𝑛)𝑒𝑛|𝑛|≤𝑁
, get 

‖𝑓 − 𝑠𝑁(𝑓) + ∑ (𝑎𝑛 − 𝑐𝑛)𝑒𝑛|𝑛|≤𝑁
‖

2

= ‖𝑓 − 𝑠𝑁(𝑓)‖2 +

‖∑ (𝑎𝑛 − 𝑐𝑛)𝑒𝑛|𝑛|≤𝑁
‖

2

. 

But this expression is greater than or equal to ‖𝑓 − 𝑠𝑁(𝑓)‖2. 

Thus ‖𝑓 − 𝑠𝑁(𝑓)‖ ≤ ‖𝑓 − ∑ 𝑐𝑛𝑒𝑛|𝑛|≤𝑁 ‖ as desired. 

This theorem says that the partial sum of the Fourier 

series of 𝑓 gives a better approximation to 𝑓 than any linear 

combination of vectors in {𝑐𝑛}𝑛∈ℤ  of non-Fourier 

coefficients. 

The following subsection deals with the most useful 

property of the Fourier series, namely the Parseval’s identity. 

This identity establishes the relation between sum of the 

squares of the magnitudes of the Fourier coefficients and the 

square of the norm of the approximating function. 

3.2 Parseval’s Identity:  

In the first result, it is showed that the Fourier series of 𝑓 

approximates 𝑓 with increasing accuracy as the degree of the 

term approaches infinity.  

Theorem 3.2.1: Suppose 𝑓 ∈ 𝑉∗ be an arbitrary function with 

Fourier coefficients 𝑎𝑛 = ⟨𝑓, 𝑒𝑛⟩. Then 𝑙𝑖𝑚
𝑁→∞

‖𝑓 − 𝑠𝑁(𝑓)‖ =

0. 

The entire proof of this result is not presented here. One 

could prove the result by considering two cases based on the 

continuity of 𝑓. We also use the following result to prove the 

case when 𝑓 is continuous. 

Result: Suppose 𝑓  is a continuous 2𝜋 −periodic function. 

Then for all 𝜀 > 0, there exists a function of the form 𝑃(𝑥) =
∑ 𝑐𝑛𝑒𝑖𝑛𝑥𝑀

−𝑀  with 𝑐𝑛 ∈ ℂ such that |𝑓(𝑥) − 𝑃(𝑥)| < 𝜀 for all 

𝑥. 

Now the background is ready to establish the Parseval’s 

identity. 

Theorem 3.2.2: If 𝑓 ∈ 𝑉∗, then ∑ |𝑎𝑛|2 = ‖𝑓‖2∞

𝑛=−∞
. 

The proof is clear from the previous theorems (Theorem 

3.1.2 and Theorem 3.2.1) 

 

IV. CONCLUSION 

In this article, a journey from Linear Algebra to the Fourier 

series is presented. A description of the consequence and 

importance of Zorn’s lemma in Linear Algebra along with the 

basics and need of normed spaces and inner product spaces, 

was discussed in detail. The issue related to the convergence 

of infinite linear combinations in infinite-dimensional linear 

spaces is addressed in detail. After discussing the feature of 

orthogonality in inner product spaces, it is found out that, 

integrable functions forms an inner product space. An 

orthonormal set in the new inner product space is constructed 

and then defined the Fourier coefficients. Finally, the best 

approximating property of the Fourier series to the 

approximating function is proved. The best approximating 

property along with the Parseval’s identity is a solution for 

the problem of convergence of the Fourier series. 
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